Vertex-distinguishing edge colorings of graphs
نویسندگان
چکیده
We consider lower bounds on the the vertex-distinguishing edge chromatic number of graphs and prove that these are compatible with a conjecture of Burris and Schelp [8]. We also find upper bounds on this number for certain regular graphs G of low degree and hence verify the conjecture for a reasonably large class of such graphs.
منابع مشابه
Adjacent Vertex Distinguishing Edge-Colorings
An adjacent vertex distinguishing edge-coloring of a simple graph G is a proper edge-coloring of G such that no pair of adjacent vertices meets the same set of colors. The minimum number of colors χa(G) required to give G an adjacent vertex distinguishing coloring is studied for graphs with no isolated edge. We prove χa(G) ≤ 5 for such graphs with maximum degree Δ(G) = 3 and prove χa(G) ≤ Δ(G) ...
متن کاملGap vertex-distinguishing edge colorings of graphs
In this paper, we study a new coloring parameter of graphs called the gap vertexdistinguishing edge coloring. It consists in an edge-coloring of a graph G which induces a vertex distinguishing labeling of G such that the label of each vertex is given by the difference between the highest and the lowest colors of its adjacent edges. The minimum number of colors required for a gap vertex-distingu...
متن کاملVertex-distinguishing edge colorings of random graphs
A proper edge coloring of a simple graph G is called vertex-distinguishing if no two distinct vertices are incident to the same set of colors. We prove that the minimum number of colors required for a vertex-distinguishing coloring of a random graph of order n is almost always equal to the maximum degree ∆(G) of the graph.
متن کاملAdjacent vertex distinguishing edge-colorings of planar graphs with girth at least six
An adjacent vertex distinguishing edge-coloring of a graph G is a proper edge-coloring of G such that any pair of adjacent vertices are incident to distinct sets of colors. The minimum number of colors required for an adjacent vertex distinguishing edge-coloring of G is denoted by χ a (G). We prove that χ a (G) is at most the maximum degree plus 2 if G is a planar graph without isolated edges w...
متن کاملVertex Distinguishing Edge- and Total-Colorings of Cartesian and other Product Graphs
This paper studies edgeand total-colorings of graphs in which (all or only adjacent) vertices are distinguished by their sets of colors. We provide bounds for the minimum number of colors needed for such colorings for the Cartesian product of graphs along with exact results for generalized hypercubes. We also present general bounds for the direct, strong and lexicographic products.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Graph Theory
دوره 42 شماره
صفحات -
تاریخ انتشار 2003